
MapChat: Technical Paper
CSCI 599: Applied Machine Learning for Games

Professor Mike Zyda

Team Members
Bailin Chen (bailinch@usc.edu)
Supreeth Kabbin (​skabbin@usc.edu)
Peiyuan Liu (peiyuanl@usc.edu)
Sriya Mahankali (smahanka@usc.edu)
Spencer Ortega (sportega@usc.edu)

Motivation and Background
MapChat is a quest-based role-playing game (RPG) that revolves around practicing English
through "chats" about everyday topics. The target demographic for this game will be any
international student or tourist looking to assess their English conversational skills for any
scenario that may arise. The main purpose of this game is to create a fun and interactive
environment to develop your English in an environment that resembles the real-world, but for
the scope of our project, we focused more on how we could use machine learning to engage
and assess MapChat users throughout their journey.

There is a marked difference between the English you would encounter in an academic setting
as opposed to your everyday life. As an English practicing game, MapChat would like to tap into
the language learning experience a person receives from candid conversations, but without the
discouraging obstacles that come with the real-world. We will mainly accomplish these feats by
using artificial intelligence to facilitate the conversations, creating a safe and non-judgemental
interaction, while the pace and difficulty of the game are dependent upon the user's expertise.

Prior Research
Prior research for MapChat included common ways machine learning is used in Game
development and how applicable these methodologies would be towards the goal.
Reinforcement learning and Artificial Intelligence bots, while commonly used in Game
development, would not be suitable for this project. In order to achieve the goal of making more

realistic interaction to gauge the users English speaking abilities and improve them, the team
looked into Google’s Language Proficiency Detection in Social Applications [1] and Knowledge
Level Assessment in e-Learning Systems Using Machine Learning and User Activity Analysis
[2].

This research led to Natural Language Processing particularly in the subdomains of Automated
Speech Recognition, Speech to Text Conversion, Natural Language Understanding and
Interactive Chatbots. Existing work in this domain existed as callable interfaces from Google
Cloud Recognition, IBM Watson, DialogFlow, Kaldi and Natural Language Toolkit.

Final Product

Overview
In order to simulate a real-world environment, the player will control a character navigating
through a map which contains various "chat spots". These locations in the game represent
places that people go to on a daily basis, such as: coffee shops, grocery stores, and gyms. The
player can go to any of these spots and have a conversation with some non-player character
(NPC), where the topic of the conversation is influenced by the location. At each level, the
player will be given a list of words and a round score of 0. To beat the level the player must use
every word in the list at least once throughout their conversations and must have accumulated a
high enough score to advance. The words in the list will become more sophisticated and score
requirements will increase as the player advances through the levels, making the levels
inherently more difficult. Points are given for every reply that is on topic and grammatically
correct, regardless if a word from the list is present. All points will be directly weighted by how
similar the context of the user's reply is to the current dialog. Appropriate feedback will be given
to the player in the case of any irrelevant input or grammatical mistakes for all replies.

Unity
We decided to use Unity as the game engine for MapChat mainly due to it having a relatively
easy learning curve, especially since none of our team members have any significant game
development experience, but also because of the numerous free Unity Assets and Software
Development Kits (SDK) that are available. Both of these aspects of Unity significantly helped
us in the long run, especially how seamless it was to import assets and SDKs into our project.

The map from our 2D version was mainly created by using Internal Unity tools and 3rd party
Assets. The background was all created brick by brick using Unity's Tilemap grid component,
while the other UI components, such as characters, chat boxes, and buildings were all sourced
from Unity Playground [3]. For our 3D version of the map we wanted to focus more on
simulating reality and providing the user with a real-world experience. Our solution to

accomplishing this was to use some Unity SDK that would allow us to generate a 3D map of the
real-world, where the user's character can interact with objects inside the map. We initially were
going to use the Google maps SDK [4] but it can only be accessed by commercial use. We
ended up using an open source alternative, MapBox [5], which was capable of doing all tasks
that were required. We no longer needed to manually create a background because Mapbox
was able to generate the streets, buildings, etc as game objects. To make it even more realistic
and personal for our fellow USC students, we set up MapBox to only focus on the USC village
area.

Machine Learning

IBM Watson
The machine learning technology in our project is primarily implemented via IBM Watson AI,
which is a cloud native solution that uses deep learning AI algorithms. We make use of a couple
of features offered by Watson, namely Speech to Text Recognition [6] and Natural Language
Understanding [7]. The presence of a Watson Unity SDK makes it ideal for our application.

Speech to Text:

Watson Speech to Text is a Deep learning neural technology which can be used to enable voice
conversation, transcription and analytics in an application. In order to give players the option to
provide their vocal input, speech recognition is employed to record this data. This gives the
player the ease of replying with speech instead of typing, while at the same time practicing their
oral articulation skills. The pre-trained model provided by Watson is not accurate and is
challenged by environmental factors such as noise and accent of a user. To tackle this, we have
trained the model with datasets of voice inputs having a noisy background and different accents.

Natural Language Understanding:

Watson Natural Language Understanding is a deep learning tool that analyzes text and extracts
metadata such as keywords, categories, entities, sentiment, emotions and syntax. ​It enables us
to break down a sentence, identify the context, and categorize the various entities present in it.
By comparing the categorical breakdown of the NPC's dialog and the user's reply statement, we
can verify whether the user is speaking in context of the current "chat spot" or if they are off
topic. We make use of the category labels, along with their confidence scores, to assess how
similar two statements are. A weighted average of the tags is used with the intersection over
union measure to calculate context similarity.

Content Generation
A very important aspect of our game is how we engage our users with dialog. We initially had
intention to train some 3rd party AI chatbot, such as IBM Watson Assistant [8], to learn how to
hold a conversation about a specific topic. After further investigation of the capabilities of these
chatbots it seemed like these services were more geared towards a personal assistant, rather
than a bot that tries to conversate. We concluded that training a chatbot to have a continuous

conversation was a much more lofty goal than we anticipated. Our next best option was to try
and generate artificial text resembling a human via some machine learning model. We looked
into multiple different open-source text generators, ultimately deciding to use the "textgenrnn" [9]
python package.

textgenrnn

The textgenrnn package allows you to easily train your own ​text-generating Recurrent Neural
Network (RNN), with a Tensorflow backend, on any generic input text file. Our idea was to train
a single RNN for every chat spot topic so that we can generate text and use it as dialog to
engage the user. Before we could even begin testing textgenrnn we had to decide on an
appropriate natural language processing (NLP) data set to parse and train it on. We ended up
choosing Yelp's NLP dataset [10] because its context aligned exactly with the type of dialog we
wanted: real people talking about real businesses.

Yelp's NLP Dataset

Yelp's dataset consists of over 5GB of real user reviews, all provided complimentary of Yelp to
advance NLP research. With there being so many reviews to choose from, we had to figure out
an intelligent way to parse training data for each desired topic. Our solution to this dilemma was
two python scripts that parsed and formatted Yelp data accordingly. For the parsing script the
user would first have to provide a list of business category tags, which is then used to filter the
raw reviews. After the business category reviews are parsed, we can then pass it through our
format script, which takes in a list of keywords that it will filter the reviews a second time with.
This methodology allowed us to quickly test different training sets by simply changing some
input parameters. Once we created a training set for all of our models we were now ready to
move our data to the cloud to start training our RNNs on GPUs to accelerate the process.

Training Resources

For our first trial of training we followed textgenrnn's suggestion to train models on Google
Colab [11], which is Google's free jupyter notebook service that has access to GPU resources.
However, when trying to use this free service we would always abruptly time-out of the system
due to inactivity on the browser, which made training multiple models unfeasible. Our next best
option was to use a paid version of Colab or some other cloud service. Coincedently one of our
team members had access to USC's Center for High Performance Computing (HPC) [12],
allowing us to do all of our training in house at USC. The installation and training of textgenrnn
was seamless with USC HPC having pre-installed CUDA libraries and tons of GPUs available to
use. We were able to complete all of our training within a few days, but we knew immediately
when we saw the results that it would not be suitable enough for our requirements. With the
deadline approaching, we decided to just use the actual yelp reviews as our dialog content, as
opposed to further tweaking the training data and model parameters to get better results.

Grammar Bot
In addition to the speech to text tool, we use a tool (GrammarBot) to check for grammatical
errors made by the user and explicitly (displayed to the user) correct them on input.
GrammarBot [13] is an API that checks the grammar mistakes of English sentences, which
returns a JSON file with the information such as error location and correction. The API uses
language models, sequence labeling and natural language parsing to perform its task. We call
the API by HTTP requests as GrammarBot can check the English sentences that users speak
during the game, so that users can realize the mistakes that they made.

Results & Analysis
Overall we were able to make significant strides with our progress developing MapChat.
The game is not ready to be released to the public, but it does serve as a proof of concept of
what we first envisioned. We were able to successfully create this quest-based english
practicing game by connecting multiple crucial components.

The rule set of mapchat is the foundation for the english-practicing our users get from playing.
By increasing the difficulty of the words in the list as the user advances through the levels, we
can use it as an adjustable parameter for all levels of expertise. To change the difficulty of the
game according to the user’s conversational skills and encourage healthy competition, we
developed a scoring system that intelligently evaluates the user's performance with the help of
NLU.

We were able to implement all these rules using multiple different Machine learning services.
Using NLU and GrammarBot, we score the user’s input by checking its grammar correctness
and its relevance to the NPC’s dialog. We were able to utilize Yelp's NLP dataset as dialog to
further facilitate a more realistic experience by providing content that was created by real
people. Although we didn't get to use our training results, we did accomplish a reusable
workflow to set up our RNN training environment on USC HPC and other cloud services alike.
Furthermore, voice input is chosen as the main input method of the game to give the user a
more realistic ‘chat’ experience. This is achieved by incorporating Watson Speech-To-Text
service.

Other than the 2D Unity Playground virtual map that we created for the user to embark on their
adventure, we implemented MapBox to provide a 3D map that is from the real-world map
allowing the user to have a realistic practice experience.

Limitations, Conclusions & Future Work
As mentioned earlier in this document, the project is not ready for the public as some limitations
and challenges need to be addressed. They are categorized into topics and are listed below:

Speech to text
The free version of Watson Speech-to-Text service is highly inaccurate when the user has an
accent. The accuracy did improve after the model was trained by us with some accented voice
datasets. However, the size of data is limited by the free service. One simple way to address
this is to use the paid service.

Natural Language Understanding
Since the free version of the Watson NLU service is used in this project, some of the keywords
are not picked up by the NLU service. This greatly affects the accuracy of the relevance
calculating mechanism of the game, which sometimes gives low similarity value even if the
sentences are relevant. Although it could be improved by using the paid service, the nature of
the existing NLU services (finding keywords and returning labels of them) are not intelligent
enough for real-world implementation.

Content Generation
We had initial intentions of using the generated text from our trained models, but after further
investigation, we found a good majority of it was gibberish. It was probably best that we
committed to using the Yelp data as our dialog, as opposed to gambling with training and
generating more text, especially since it is such a crucial component to our English practice. At
the end of the day, your trained model is only as good as the training data you feed it. We would
need to make some drastic improvements in the way we intelligently filter out reviews given a
topic to implement this initial method. One possible idea is to run our NLU service on all of the
reviews so we could have a better understanding of its context before filtering.

Setting up our software and computing resources was fairly a simple process on USC HPC. The
only issue we encountered was attempting to connect GPUs from distributed nodes together,
which in the end limited us to only being able to use one node with two GPUs for each model
we needed to train. If we could get a model to train on four GPUs instead of two, there should
be noticeable speed up in the training, giving us more time to train more models.

The last improvement that would solidify our content generation solution would be to generate
dialog in the game. After we finish training our models using accelerated computing resources,
we could use the newly created weight file to infer/generate text using the resources of a laptop.
So after we successfully train our models to our liking and standard, we could then import them

into our Unity project. While the game is running, we can call the textgenrnn python package to
infer text on the fly. This would tie the conversation aspect of our game together by dynamically
creating new dialog instead of using a static list, giving our users a fresh experience every time.

Unity
Due to the time limit and the fact that none of the team members has experience in game
graphic design, the game utilizes the most basic graphical implementation of Unity and MapBox.
This also limits us to achieve one of our ambitious goals: dynamically assigning ‘chat spots’ on
the 3D map by reading the labels of the business on the map. Reading the labels itself is not a
challenge since all the data is publicly accessible via MapBox or Google Maps. But time is
needed to seek a solution to layout the collider GameObjects dynamically in Unity.

Gameplay Mechanism
If the game is to be developed into a public-released game, some of the gameplay mechanisms
need to be refined. For example, the scoring system should also record the user’s performance
for different topics separately, so that the user can be given more words related to the topics
that they are weak at. Furthermore, a new word list creating a system needs to be developed in
order to create the words list dynamically, with the words that are related to the topics as well as
the difficulty matches the level.

References
[1] Google: Language Proficiency Detection in Social Applications. Retrieved from
https://patentimages.storage.googleapis.com/1c/82/c8/355135e6b8324e/US20140335483A1.pdf
[2] Knowledge Level Assessment in e-Learning Systems Using Machine Learning and User
Activity Analysis. Retrieved from
https://pdfs.semanticscholar.org/fb8f/2646a05ac4066b40444ab481a04157301a89.pdf
[3] Unity Assets Store. Retrieved from
https://assetstore.unity.com/
[4] Google Maps SDK Overview. Retrieved March 4, 2020 from
https://developers.google.com/maps/documentation/gaming/overview_musk
[5] MapBox. Retrieved from
https://www.mapbox.com/unity/
[6] IBM Watson Speech to Text. Retrieved from
https://www.ibm.com/cloud/watson-speech-to-text
[7] IBM Watson Natural Language Understanding. Retrieved from
https://www.ibm.com/cloud/watson-natural-language-understanding
[8] IBM Watson Assistant. Retrieved from
https://www.ibm.com/cloud/watson-assistant/
[9] textgenrnn
https://github.com/minimaxir/textgenrnn
[10] Yelp's NLP dataset
https://www.yelp.com/dataset
[11] Google Colab. Retrieved from
https://colab.research.google.com/
[12] Center of High-Performance Computing, University of Southern California. Retrieved from
https://hpcc.usc.edu/
[13] GrammarBot. Retrieved from
https://www.grammarbot.io/about

https://patentimages.storage.googleapis.com/1c/82/c8/355135e6b8324e/US20140335483A1.pdf
https://pdfs.semanticscholar.org/fb8f/2646a05ac4066b40444ab481a04157301a89.pdf
https://assetstore.unity.com/
https://developers.google.com/maps/documentation/gaming/overview_musk
https://www.mapbox.com/unity/
https://www.ibm.com/cloud/watson-speech-to-text
https://www.ibm.com/cloud/watson-natural-language-understanding
https://www.ibm.com/cloud/watson-assistant/
https://github.com/minimaxir/textgenrnn
https://www.yelp.com/dataset
https://colab.research.google.com/
https://hpcc.usc.edu/
https://www.grammarbot.io/about

